Journal of Chromatography, 80 (1973) 199-204

© Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 6676

THIN-LAYER CHROMATOGRAPHY OF AMINO ACID HYDANTOINS*

TATEO SUZUKI, KIEKO KOMATSU** AND KATURA TUZIMURA

Laboratory of Analytical Chemistry, Department of Food Chemistry, Faculty of Agriculture, Tohoku University, Tsutsumidori-Amamiyamachi, Sendai (Japan)

(First received December 8th, 1972; revised manuscript received February 26th, 1973)

SUMMARY

Amino acid hydantoins were detected directly in amounts of $0.2-0.5 \mu g$ with *tert*.-butyl hypochlorite. The amino acid hydantoins were separated by thin-layer chromatography using the following solvent systems: (I) chloroform-ethanol-formic acid (2:1:1); (II) *n*-butyl acetate-ethanol-formic acid (12:2:1); (III) dichloroethane-ethanol-formic acid (80:20:1); and (IV) *n*-butanol-acetic acid-water (15:2:5). The terminal amino groups of several proteins were detected successfully.

INTRODUCTION

Potassium cyanate reacts with the amino groups of peptides or proteins in slightly alkaline solution, and the corresponding amino acid hydantoin is formed by subsequent acidification. The hydantoin derivatives are more stable than thiohydantoins, especially against air oxidation, because the 2-position of the hydantoin ring is substituted with a carbonyl group instead of the thiocarbonyl group in thiohydantoins.

Stark¹ reported the use of amino acid hydantoins in the determination of Nterminal amino acid groups of peptides or proteins. He identified the liberated amino acid hydantoins by hydrolyzing them to the corresponding amino acids, which were detected with ninhydrin. However, he did not propose the direct identification of amino acid hydantoins on chromatograms, presumably because there was no suitable detecting agent. Ultraviolet absorption was used by Hagel and Gerding² for the direct identification of hydantoins in column chromatography.

We previously reported³ the optical rotatory dispersion and circular dichroism of L-amino acid hydantoins and suggested their application in the determination of the D,L-configuration of the N-terminal amino acid groups of peptides.

We found that *tert*.-butyl hypochlorite was suitable for the detection on chromatograms of amino acid hydantoins, which were sensitively revealed by this "peptide bond detecting agent" as blue spots. Two imino protons of hydantoin react with the reagent, and imino groups at the 3-position, which has two adjacent carbonyl groups, may react more sensitively.

* Presented at the Annual Meeting of the Agricultural Chemical Society of Japan, April 1st, 1972. ** Present address: Institute of Food Science, Kyoto University, Kyoto, Japan. The thin-layer chromatography (TLC) of amino acid hydantoins and their detection with *tert*.-butyl hypochlorite is reported in this paper.

EXPERIMENTAL

Preparation of materials

tert.-Butyl hypochlorite was prepared in the conventional manner⁴.

All the materials used were prepared as in the previous work³. A representative procedure, for the preparation of 5-methylhydantoin (hydantoin derived from alanine) was as follows.

L-Alanine (4.5 g; 0.05 mole) and 4.9 g of potassium cyanate were dissolved in 30 ml of water and were allowed to react for 30 min at 70° with stirring. The reaction mixture was refluxed with 30 ml of 6 N hydrochloric acid and, after filtration, the solution was allowed to stand overnight in a refrigerator. Recrystallization from hot water gave 4.5 g of the hydantoin in a yield of 79.0%.

According to the above procedure, 13 hydantoins were prepared, including the derivatives of glycine, alanine, phenylalanine, aspartic acid, glutamic acid, lysine, arginine, histidine, methionine, cysteine, proline, serine and threonine. Histidine hydantoin was obtained by adjusting the pH to 5 with 2 N sodium hydroxide solution after cyclization. Arginine hydantoin was prepared according to the method of Boon and Robson⁵. Lysine, which has an *e*-amino group, reacted with twice the molar amount of potassium cyanate in a similar manner to phenyl isothiocyanate. The reactions of other functional groups were similar to those of phenylthiohydantoin with the exception of serine and threonine. Hydantoins derived from serine and threonine were prepared without the need for dehydration, although the synthesis of the thiohydantoins proceeded simultaneously with dehydration.

With valine, leucine, isoleucine, tyrosine and tryptophan, pyridine (at the carbamylation stage) and acetic acid (at the cyclization stage) were added in order to dissolve the amino acids.

Thin-layer chromatography

All solvents except formic acid were redistilled. The formic acid used was of commercial analytical-reagent grade and was used without further purification.

TLC of the amino acid hydantoins was carried out in a jar $(24 \times 21 \times 5 \text{ cm})$ on a $20 \times 20 \text{ cm}$ plate of silica gel (Kieselgel G, Merck, 0.25 mm thick) which had been activated for 40 min at 110°.

All of the chromatograms were equilibrated with the vapour of the solvent system in a jar before the runs. The solvent systems used are described later.

The compounds in the spots were detected by spraying with 1% of *tert*.-butyl hypochlorite in dichloroethane containing 10% of acetic acid, followed by spraying an equal volume of 0.05 N KI and a saturated solution of *o*-tolidine in 2% acetic acid. Free amino acids were also detected with this reagent on thin-layer chromatograms, but were distinguished from hydantoins with ninhydrin as the hydantoins were not revealed.

Terminal amino acid group determination of beef insulin and several proteins

The Stark procedure for the determination of N-terminal amino acids was

TLC OF AMINO ACID HYDANTOINS

followed until the liberation of terminal amino acid hydantoin¹. The determination of insulin as an example was carried out as follows. The scale was $1.0 \,\mu$ mole.

Insulin (6.0 mg) was dissolved and denatured in a mixture of 1.3 ml of 8 M urea and 1.3 ml of morpholine-acetate buffer (pH 8.0) and carbamylated overnight with 125 mg of potassium cyanate at 50°. After dialysis and lyophilization, the carbamylated protein was dissolved in acetic acid and hydrolyzed in a sealed tube with 5 ml of 6 N HCl at 110° for 30 min.

After evaporation to dryness, the residue was placed on a column of ion-exchange resin (Amberlite IR-120). The column was eluted with water, the first 30 ml of effluent was evaporated to dryness and the residue was dissolved in ethanol. An aliquot of the solution was chromatographed as described before.

Ribonuclease-A, lysozyme and trypsin were determined by the same procedure. Glutathione was carbamylated without denaturation.

RESULTS AND DISCUSSION

The solvent systems used were as follows:

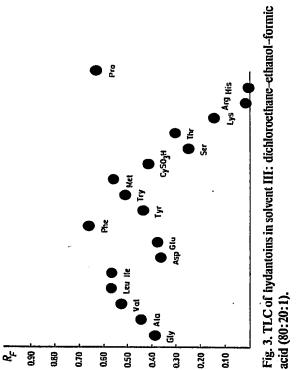
(I) chloroform-ethanol-formic acid (2:1:1)

(II) *n*-butyl acetate-ethanol-formic acid (12:2:1)

(III) dichloroethane-ethanol-formic acid (80:20:1)

(IV) n-butanol-acetic acid-water (15:2:5).

Amino acid hydantoins derived from 18 amino acids (Table I) were separated successfully; R_F values are shown in Table II and Figs. 1-4. Asparagine and glutamine


TABLE I

ELEMENTARY ANALYSIS AND MELTING POINTS OF HYDANTOINS

Compound	Lit. m.p. (°C)	Calcula	ted (%)		Found m.p. (°C)	Found (%)			
		C	Н	N		C	H	N	
Gly	223-225	36.00	4.03	27.99	222	35.71	3.91	28.07	
Ala	174-177	42.10	5.30	24.55	177	41.72	5.31	24.47	
Val	146-148	50.69	7.07	19.71	145	50.45	7.02	19.43	
Leu	212-214	53.83	7.74	17.94	214	53.63	7.77	18.24	
lie	150-151	53.83	7.74	17.94	148	53.83	7.67	18.04	
Asp	210-213	37,98	3.83	17.72	218	37.67	3.64	18.01	
Glu	175-176	41.86	4.68	16.28	174	41.70	4.58	16.17	
Phe	181-183	63.15	5.30	14.73	182	63.35	5.13	15.00	
Tyr	261-264	58.25	4.89	13.58	262	58.10	4.82	13.50	
Try	248-251	62.87	4.84	18.33	244	62.64	4.69	18.41	
Met	103-105	41.36	5.79	16.08	104	41.23	5.65	16.40	
CySO ₃ H	—	20.83	3.06	12.15	273 (decomp.)	20.54	2.11	12.24	
Ser	187-188	36.93	4.65	21.53	188	36.61	4.49	21.54	
Thr	193-196	41.66	5.59	19.44	200 -	41.87	5.34	19.33	
Lys	195-197	44.85	6.59	26.16	193	44.85	6.64	26.15	
Arg	100	34.36	6.18	28.62	100	34.30	6.04	28.45	
His	235	28.81	4.19	25.86	< 280	28. 9 9	4.14	25.78	
Pro	163-165	51.42	5.75	19.99	165	49.22	5.61	19.81	

(2:1:1).

Tyr Try

Ala

0.60

L_{cu} IIe Vat

0.70

080

06'0

مديد

Glu Asp

Gly

0.50 070 050 0.20 0.10 Fig. 4. TLC of hydantoins in solvent IV: n-butanol-acetic acid-water

(15:2:5).

0.10

were not examined as their hydantoins were hydrolyzed during acidification to give aspartic and glutamic acid, respectively.

The separation of leucine and isoleucine was difficult, as in other chromatographic separations.

The limit of detection of the hydantoins with *tert*.-butyl hypochlorite was 0.2-0.5 μ g, as shown in Table III. A quantitative or semi-quantitative study has not yet been carried out.

TABLE II

$R_F \times 100$ VALUES OF AMINO ACID HYDANTOINS

Results are given for three determinations with each solvent together with the average values. Solvents I-IV as listed in the text.

Amino	Solvent I				Solvent II			Solvent III				Solvent IV				
acid	1	2	3	Av.	1	2	3	Av.	1	2	3	Av.	1	2	3	Av.
Gly	54	53	56	54	53	54	53	53	39	38	40	39	56	52	56	55
Ala	64	62	66	64	61	56	60	59	44	45	44	44	63	58	64	62
Val	75	75	78	76	72	68	71	70	48	56	56	53	70	71	74	72
Leu	78	78	82	80	77	73	75	75	53	60	61	58	74	75	77	75
lle	78	78	83	80	78	70	74	73	52	60	59	57	75	74	75	75
Asp	52	51	52	52	59	55	59	58	38	35	40	38	54	50	53	52
Glu	53	52	55	53	59	57	64	60	39	35	37	38	62	59	62	61
Phe	79	78	82	79	77	72	73	74	63	66	68	65	75	74	74	74
Tyr	65	62	65	64	71	70	73	72	41	45	43	44	70	65	75	70
Try	68	59	67	65	74	74	76	75	49	55	52	52	74	74	77	75
Met	45	42	46	44	71	71	72	71	52	59	58	56	71	70	73	71
СуН	51	48	41	47	76	70	69	72	40	42	45	42	65	63	70	66
Ser	43	43	42	43	36	34	37	36	27	24	29	27	51	48	47	49
Thr	49	48	49	48	46	42	44	44	33	28	32	31	53	49	50	51
Lys	49	49	49	49	22	22	22	22	13	13	16	14	49	48	49	49
Arg	30	31	28	30	01	O 3	02	02	02	02	04	03	32	28	29	30
His	24	23	23	23	01	02	01	01	02	02	04	03	20	18	19	19
Pro	77	74	78	76	63	59	61	61	57	63	65	62	64	62	63	63

TABLE III

DETECTION LIMITS OF AMINO ACID HYDANTOINS USING tert.-BUTYL HYPO-CHLORITE

Amino acid	Detection limit (µg)	Amino acid	Detection limit (µg)		
Gly	0.2	Try	0.2		
Ala	0.5	Met	0.5		
Val	0.5	CySO ₃ H	0.2		
Leu	0.5	Lys	0.2		
Ile	0.5	Arg	0.5		
Asp	0.5	His	0.2		
Glu	0.4	Ser	0.2		
Phe	0.5	Thr	0.2		
Tyr	0.4	Pro	0.5		

- **.** .

When the method was applied to beef insulin, two amino acid hydantoins were detected as being N-terminal, and were identified as glycine and phenylalanine (Fig. 5).

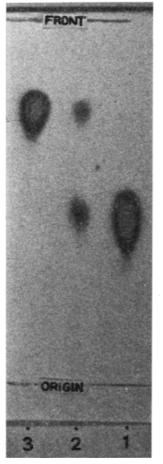


Fig. 5. TLC of N-terminal amino acids from beef insulin using solvent system II: *n*-butyl acetateethanol-formic acid (12:2:1). 1 = Glycine hydantoin; 2 = insulin; 3 = phenylalanine hydantoin.

The N-terminal amino acids of glutathione (glutamic acid), ribonuclease-A (lysine), lysozyme (lysine) and trypsin (leucine) were also identified by this method.

REFERENCES

- 1 G. R. Stark, Methods Enzymol., 11 (1967) 125.
- 2 P. Hagel and J. J. T. Gerding, Anal. Biochem., 28 (1969) 47.
- 3 T. Suzuki, K. Igarashi, K. Hase and K. Tuzimura, Agr. Biol. Chem. (Japan), 37 (1973) 411.
- 4 H. M. Teeter and E. W. Bell, Org. Syn., Collect. Vol. IV (1963) 125.
- 5 W. R. Boon and W. Robson, Biochem. J., 29 (1935) 2573.